Controlling the Fluid Dynamics of Electro-wetting on Dielectric

نویسندگان

  • Shawn W. Walker
  • Benjamin Shapiro
  • Ricardo H. Nochetto
چکیده

Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS OF ELECTRO-WETTING ON DIELECTRIC Shawn W. Walker, Doctor of Philosophy, 2007 Dissertation directed by: Professor Benjamin Shapiro Department of Aerospace Engineering and Professor Ricardo H. Nochetto Department of Mathematics This work describes the modeling and simulation of a parallel-plate Electrowetting On Dielectric (EWOD) device that moves fluid droplets through surface tension effects. The fluid dynamics are modeled by Hele-Shaw type equations with a focus on including the relevant boundary phenomena. Specifically, we include contact angle saturation, hysteresis, and contact line pinning into our model. We show that these extra boundary effects are needed to make reasonable predictions of the correct shape and time scale of droplet motion. We compare our simulation to experimental data for five different cases of droplet motion that include splitting and joining of droplets. Without these boundary effects, the simulation predicts droplet motion that is much faster than in experiment (up to 10-20 times faster). We present two different numerical implementations of our model. The first uses a level set method, and the second uses a variational method. The level set method provides a straightforward way of simulating droplet motion with topological changes. However, the variational method was pursued for its robust handling of curvature and mass conservation, in addition to being able to easily include a phenomenological model of contact line pinning using a variational inequality. We are also able to show that the variational form of the time-discrete model satisfies a well-posedness result. Our numerical implementations are fast and are being used to design algorithms for the precise control of micro-droplet motion, mixing, and splitting. We demonstrate micro-fluidic control by developing an algorithm to steer individual particles inside the EWOD system by control of actuators already present in the system. Particles are steered by creating time-varying flow fields that carry the particles along their desired trajectories. Results are demonstrated using the model given above. We show that the current EWOD system [29] at the University of California in Los Angeles (UCLA) contains enough control authority to steer a single particle along arbitrary trajectories and to steer two particles, at once, along simple paths. We also show that particle steering is limited by contact angle saturation and by the small number of actuators available in the EWOD system. MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS OF ELECTRO-WETTING ON DIELECTRIC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pongamia pinnata Plant Seed Oil as Dielectric Fluid for Electro Discharge Machining Process

Electro Discharge Machining (EDM) is a noticeable machining practice among created unconventional machining procedures for intricate, complex profiles in "hard to machine" materials, similar to heat-treated steels, composites, superalloys, ceramics, composites, carbides, and so on. In EDM, the material expulsion of the cathode is accomplished through precise controlled electric discharge (the s...

متن کامل

Numerical Study of Electro-thermo-convection in a Differentially Heated Cavity Filled with a Dielectric Liquid Subjected to Partial Unipolar Injection

The Coulomb force applied by an electric field on any charge present in a dielectric liquid may cause fluid motion. At high applied electric fields in an insulating liquid, electric charge carriers are created at metallic/liquid interfaces, a process referred to as ion injection, and result from electrochemical reactions. In this article we deals with the problem of electro thermal convection i...

متن کامل

Design and Analysis of a Wetting Lens for the Pinhole Cameras of a Two Phase Flow System

The present work reports the fabrication process of micro lens for pinhole cameras using COMSOL Multiphysics®, by satisfying the wetting properties. Wetting means change of contact angle between the liquid and solid surface area. The wetting properties are clearly understood in terms of forces. The two immiscible fluids like conducting fluid and insulating fluid were taken for the formation of ...

متن کامل

Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering

In this work, a method is presented for controlling on-chip droplet dispensing by electro-wetting actuation in conjunction with capacitance feedback. The method exploits the built-in capacitance of an electro-wetting device to meter the droplet volume and control the dispensing process. A self-contained system is built to provide continuous-flow loading, capacitance measurement, and electro-wet...

متن کامل

Dynamics of electro-wetting droplet transport

A model is formulated to describe the dynamics of electro-wetting-induced transport of liquid droplets. The velocity of droplet transport as a function of actuation voltage is derived. The operating parameters include the viscosity of the droplet and the medium through which it actuates, contact-line friction, system geometry, and surface tension. Numerical coefficients are extracted from exper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007